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Abstract: Aniline sensing is of great societal implications, as aniline is a crucial chemical raw material but with
high toxicity, processing with huge impacts on environment safety and human health. Herein, a novel cyanostilbene
derivative (CN-DBE) was designed and synthesized as selective fluorescent probe material for aniline detection. Its
aggregation-induced emission property, sensing property and detection mechanism were elucidated by photolumines-
cence spectra and numerical simulation. The results reveal that CN-DBE possesses high selectivity, quantitative and
rapid detection ability to aniline due to the electron transfer mechanism. Moreover, the CN-DBE compound can also

enable the fabrication of test strips, which provide a cheap and simple way to detect aniline leakage.
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1 Introduction

As a crucial chemical raw material, aniline is
widely used in dye industry, pesticide production

[1-4]

and rubber auxiliaries Yet, aniline is a highly

toxic chemical, which can cause harmful effects to

5-6

human body and environment™. The leakage of ani-
line can cause methemoglobinemia and damage to
organs such as liver, kidney and skin through direct

contact and breathing™.

Therefore, aniline detec-
tion is of great societal implications for public health
and environment safety. In particular, aniline in large
amount will leak into the water environment when
safety accidents occur in industrial production and
transportation. Rapid and visible detection of abrupt
and massive aniline-leakage in water media is vitally
required for assessing and controlling the damage.

So far, the traditional methods for detection of
aniline include high performance liquid chromatog-
raphy”, gas chromatography-mass spectrometry"”,
spectral analysis"” and cyclic voltammetry"” which
applied by the difference of optical properties, polari-
ty and other chemical properties. Nonetheless, these
methods require special instruments which is labor-
intensive, time consuming and expensive, and are

. . . 13
not readily available in most cases"”.

Compared
with traditional approaches, fluorescent probe is
emerging as an alternate due to its advantages such
as simple operation, low cost, high selectivity and

1 However, most of them are affected

sensitivity'
by the phenomenon of aggregation caused quenching
(ACQ), which limits the application of probes in
many fields™>".

Different from traditional luminescent materi-
als, a new class of luminogens with aggregation-in-
duced emission (AIE) effect which have higher lu-
minous efficiency in the aggregated state was pro-

[24-27]

posed by Tang’s group " ". Among them, cyanostil-
bene is widely used due to its excellent fluorescent
properties including high photostability and excel-
lent fluorescence quantum yields as well as a control-

lable emission wavelength®™*”. Cyanostilbene and

W POLRRAR; W AR M R RO M REAA ; Uil SR TR

its derivatives have already been applied into detec-
tion sensors, near-infrared biological imaging, solar

31-36
B39 However,

cells and anti-counterfeiting materials
the detection of aniline in aqueous medium by AIE
materials is relatively rare. It is of great interest to
know whether it is possible to fabricate cyanostil-
bene-based fluorescent sensor for rapid detection of
aniline for industrial safety.

Herein, we designed and synthesized a cyanos-
tilbene derivative which can be serving as a fluores-
cent sensor for aniline. The photoinduced charge
transfer between cyanostilbene and aniline can trig-
ger the fluorescence quenching of cyanostilbene, en-
abling visible detection to aniline. The selectivity,
quantitative and rapid detection to aniline have been
characterized in detail, which proves it is a valuable
method to detect aniline in aqueous media. In addi-
tion, the test papers prepared by soaking CN-DBE
solution can achieve the visible detection immediate-
ly, which proves its potential in rapid detection of an-

iline leaks.

2  Experiment

2.1 Apparatus

'"H NMR spectrum was recorded on a Bruker
AVANCE I spectrometer from Switzerland with
deuterated chloroform (CDCl;) as solvent and tetra-
methylsilane (TMS) as internal standard at room
temperature. All the photoluminescence (PL) spec-
tra were recorded on Hitachi FL-2500 fluorescence
spectrophotometer from Japan.
2.2 Chemicals

Potassium carbonate (98%, Tianjin, Heowns),
4-hydroxybenzaldehyde (98%, Tianjin, Heowns), 4-
hydroxyphenylacetonitrile (98%, Tianjin, Heowns),
anhydrous magnesium sulfate ( 98%, Shanghai, En-
ergy Chemical), tetrabutylammonium bromide(TBAB,
97%, Tianjin Heowns), sodium hydroxide (98%,
Shanghai, Energy Chemical) were used as received.
3,4, 5-tris (dodecyloxy) benzyl chloride was synthe-
sized according to the method in the literature”

The water in the experiments was purchased from
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Hangzhou Wahaha Group Co., Ltd. All the other
solvents were purchased from Jiangtian Chemical
Reagents Co. Ltd. and used without further purifica-
tion unless otherwise specified.
2.3 Synthesis of CN-DBE

The synthetic route of CN-DBE is shown in
Scheme 1. With the addition of K,CO5; and TBAB,
the intermediates could be synthesized by Williamson
ether synthesis. Then add 3, 4, 5-tris (dodecyloxy)
benzyl-p-benzaldehyde ether(0. 76 g, 1 mmol), 4-hy-
droxyphenylacetonitrile (0. 20 g, 1. 5 mmol), and so-
dium hydroxide (0. 12 g, 3 mmol) into a 250 mL

round bottom flask, followed by the addition of tetra-

Oclezs OHCO
0C,,Hys
Cl
K,CO,, TBAB, acetone
0C,Hys ‘

NC

Scheme 1

3 Results and Discussion

3.1 Characterization and Aggregation-induced
Emission Property

To prove the successful preparation of CN-
DBE, 'H NMR spectrum was conducted to confirm
the chemical structure of CN-DBE (Fig. 1). To in-
vestigate the thermostability of CN-DBE, the thermo-
gravimetric analysis(TGA) experiment was conduct-
ed from 25 C to 800 °C at a heating rate of 10 ‘C/
min. The 5% decomposition temperature of CN-

DBE is 275 °C, indicating the good thermostability of
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Fig.1 'H NMR of CN-DBE in CDCl,

6.00

hydrofuran for 5 mL. After it was completely dis-
solved, 25 mL of anhydrous ethanol was added with
the reaction heated and refluxed for a total of 24 h.
After the reaction was completed, the mixture was
cooled to room temperature, and dilute hydrochloric
acid in certain amount was added to the system be-
fore adjusting the pH to weak acidity. Orange solid
in a large amount was precipitated in the flask, and
then filtered and washed. Following the process in
which the orange solid was separated by column
chromatography using dichloromethane/petroleum
ether(1/1) as eluent, the yellow compound CN-DBE
was obtained in 70% yield.

0C,,H
on 124425
> OC]ZHZS
OHC 0
) OCIZHZS
OH N OCIZHZS
HO \ O O OCIZHZS
NaOH, EtOH 0C,,H,,

Synthesis routes of CN-DBE

CN-DBE(Fig. 2).
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Fig.2 TGA curveof CN-DBE under the rate of 10 “C/min

The photophysical property of CN-DBE was in-
vestigated in THF/H,0 mixture with THF as a good
solvent and water as a poor solvent. As displayed in
Fig. 3(a), CN-DBE shows weak emission in pure THF
due to the dispersed state of molecules caused by its
good solubility in THF. With the increase of water
content, the PL intensity showed apparent enhance-
ment due to formation of aggregates. Compared with
the CN-DBE molecules in pure THF, the fluores-
cence intensity of CN-DBE in THF/H,0 mixture with
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fv = 95% was boosted with 7.5 folds (Fig. 3(b) ).

Moreover, the emission wavelength was red-shifted

from 453 nm to 480 nm, which is attributed to the ag-

. . . . . 22
gregation-induced conformational ~planarization™.

These results showed that CN-DBE is a typical AIE

material.
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Fig.3 (a)Fluorescence spectra of CN-DBE in different H,0/
THF mixtures from f, = 0% to 95%. ( [CN-DBE] =
10 wmol-L™", A = 350 nm). (b) Plot of I/l versus
water fraction of H,O/THF mixtures of CN-DBE,
where I, represents the fluorescence intensity in pure
THF solution. Inset: photographs of CN-DBE in THF/
water mixtures (f, = 0, 95%) taken under the illumi-

nation of a UV lamp(365 nm).

3.2 Aniline Detection

The intriguing AIE effect of CN-DBE prompts us
to explore its potential application as fluorescence
sensor for detecting aniline. Fluorescence spectros-
copy experiments were conducted to quantify aniline
induced fluorescence intensity changes of CN-DBE.
As displayed in Fig. 4(a), the fluorescence intensity
decreased gradually with the amounts of aniline
(0.01-0. 1 mol-L™") were added into CN-DBE solu-
tion (10 pwmol-L™), exhibiting turn-off response to

aniline in water. Moreover, it can be observed from

Fig. 4 (b) that the intensity of I/l, and aniline con-
centration possesses a good linear relationship with-
in the concentration. According to the definition by
IUPAC (C.=K-S,/m), the detection limit was calcu-
lated to be 1. 1 x 107 mol- L™

(a)
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: | =0.04 mol-L.~
z 250 —0.05 mol-L.”!
= = ().06 mol - L~
2 200f ——0.07 mol-L.”"
= — .
g 150 0.08 mol
E
£ 100
50
0 e
400 450 500 550 600 650 700
A/mm
(h) 400
350 y=-2628.274x+304.699
300 R’=0.987 15
S 250f
L
=
= 200}
g
E 150}
= 100}
50
0 1 1 1 1

0 0.02 0.I04 0.:)6 0.08 0.10
[Aniline}/(mol - L")

Fig.4 (a) Changes in the emission spectra of CN-DBE (10
pwmol*L™") with different concentrations of aniline in
the mixture of THF/water(v:v = 1:4). (h) Plot of the
fluorescence intensity of CN-DBE with different con-

centrations of aniline.

In order to evaluate the specific detection of an-
iline by CN-DBE sensor, we compared the fluores-
cence responses of CN-DBE to aniline with other
amine compounds under the same test condition, in-
cluding diisopropylamine, cyclohexylamine, triethyl-
amine, n-butylamine, dicyclohexylamine, benzyl-
amine, diethylamine. As can be seen from Fig. 5(a),
after adding diisopropylamine, cyclohexylamine, tri-
ethylamine, n-butylamine, dicyclohexylamine, ben-
zylamine and diethylamine, the fluorescence intensi-
ty of the system did not decrease drastically, which
is different from the obvious turn-off response when
aniline was added. The optical images shown in
Fig. 5 (b) indicate that CN-DBE has fluorescence

quenching effect only after adding aniline. The
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Fig.6 Emission intensity of CN-DBE in the mixture of ani-
line with cations(a) and anions(b). [CN-DBE] = 10
Fig.5 (a)Emission spectra changes of CN-DBE upon the ad- ,

dition of amines. A,,=350 nm. (b) The optical image
of CN-DBE with the addition of amines under UV irra-
diation.

The interference of ions generally exists when
detecting aniline in the aqueous medium. Therefore,
to evaluate the anti-interference ability of CN-DBE
probe, we compared the detection ability of CN-DBE
for aniline in the presence of various ions. As shown
in the Fig. 6, with the addition of other interfering
substances, the fluorescence response of CN-DBE to
aniline was almost unaffected. All these results sug-
gest that CN-DBE can act as a selective fluorescent
sensor for aniline with anti-interference ability in
aqueous media. Each experiment was repeated
three times to make sure the accuracy of result.

In order to investigate the response time of the
CN-DBE on aniline detection, the intensity changes
of PL spectra were detected by the addition of 0. 04
mol+ L™ aniline, and the results are shown in Fig. 7.
After the addition of aniline, CN-DBE exhibited fluo-
rescence quenching immediately, and the fluores-
cence intensity dropped to the minimum value after
5 s when it was first measured. It proves that CN-
DBE has a very short response time and can be used

for immediate detection of aniline in aqueous media.

wmol- L™, [cations] and [anions] = 0.04 mol-L™".
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Fig.7 The response time and intensity changes of CN-DBE
(10 pmol-L™") upon the addition of aniline (0.04

mol+ L") in the mixture of THF/water(v:v=1:4)

In the process of the practical detection of ani-
line, portability and immediacy are particularly im-
portant, so the potential application of CN-DBE in
fabricating test paper was investigated. The paper
strips were prepared by soaking the filter paper in
CN-DBE solutions, and then dry them with aeration
at room temperature. As shown in Fig. 8 (a), the
original PL. emission of the test papers is bright blue
under UV illumination. With addition of aniline, the
fluorescence of test paper was effectively quenched
(Fig. 8(b) ). Moreover, the applicability of the CN-

DBE test paper on real-world samples, such like
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Fig.8 (a) The schematic diagram of preparing test papers.
(b) Test papers under the illumination of a UV lamp.
Left: pure test paper, middle: test paper with CN-
DBE, right: test paper with CN-DBE after dropping
aniline solution. (¢) The applicability of the CN-DBE

test paper on real-world samples.
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wastewater, tap water and river water was further in-
vestigated. As shown in Fig. 8(c), the detection ef-
fect of CN-DBE is not affected by the complex ma-
trix. The excellent response time and test strip porta-
bility make CN-DBE have great application potential
in aniline leak detection in chemical plants.
3.3 Sensing Mechanism of Aniline Detection

To clarify the detection mechanism, the quan-
tum chemical calculation (B3LYP method and def2-
tzvp basis set) was conducted by density functional
theory. As shown in Fig. 9(a), the HOMO and LU-
MO state density was uniformly distributed at the
whole aromatic unit of CN-DEBE, and the HOMO
and LUMO energy levels are =5.42 eV and —1.75
eV. The HOMO energy level of aniline is higher
than those of diisopropylamine, cyclohexylamine, tri-
ethylamine, n-butylamine, dicyclohexylamine, ben-
zylamine and diethylamine. In particular, only the
HOMO energy level of aniline is higher than CN-
DBE, while the HOMO energy levels of other amine
compounds are lower than CN-DBE. As shown in
Fig. 9(b), the electrons in HOMO in CN-DBE tend
to be excited to LUMO under illumination. Since

the HOMO energy level of aniline is higher than that
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Fig.9 (a)Corresponding frontier orbital (HOMO and LUMO) distributions of CN-DBE. (b) The detection mechanism of aniline

by CN-DBE.
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of CN-DBE, the electrons on the HOMO of aniline
will transfer to the HOMO of CN-DBE. Subsequent-
ly, the electrons of the LUMO in the CN-DBE will be
transferred to the HOMO of aniline, resulting in the
phenomenon of fluorescence quenching of the sys-
tem. So it is speculated that the photoinduced elec-
tron transfer between CN-DEBE and aniline is the

detection mechanism.

4  Conclusion

In summary, a cyanostilbene-based fluorescent

sensor (CN-DBE) for aniline detection has been syn-

CN-DBE is a typical AIE material. Due to the photoin-
duced electron transfer between CN-DBE and aniline,
the fluorescence of CN-DBE can be quenched with the
addition of aniline, enabling a visible turn-off detec-
tion effect. The experimental results indicate that CN-
DBE possesses high selectivity and quantitative recog-
nition to aniline. Particularly, the response time of
CN-DBE to aniline is almost negligible, which proves

its potential in rapid detection of aniline leakage.

Response Letter is available for this paper at:http://
cjl. lightpublishing. cn/thesisDetails#10. 37188/CJL.

20220423.

thesized. The photoluminescence spectra reveal that
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